

BEACON: A Bayesian Novelty Search Algorithm for Efficient Material Property Discovery

Wei-Ting (Jonathan) Tang, Ankush Chakrabarty & Joel A. Paulson

Motivation

 Optimal choice of objective is not always obvious in material exploration problem, especially when multiple properties need to be considered simultaneously

- Novelty search is an objective-free strategy designed to explore multi-dimensional properties for black-box system
- Vanilla novelty search is based on evolutionary algorithm and suffers from sample inefficiency

Introduction

Novelty Search

 Novelty search is a sequential strategy for discovering novel outcome for black-box function

- Novelty search defines the fitness function (F) of Evolutionary Algorithm as the sum of the k-nearest distance from a given function value f(x)
 - $> F(x) = \frac{1}{k} \sum_{i=1}^{k} \operatorname{dist}(f(x), y_i^*)$
 - \triangleright Where f(x) is the sampled function value
 - $> y_i^*$ is the k-nearest neighbor of f(x)

Bayesian Optimization

 Bayesian optimization (BO) is a sequential strategy for global optimization of black-box function

While {budget not exhausted}

- Fit a Bayesian machine learning model
 (usually Gaussian process regression) to observations (x, f(x))
- 2. Find x that maximizes acquisition(x, posterior)
- 3. Sample x & then observe f(x)

end

BEACON

- BEACON (Bayesian Exploration Algorithm for outCOme Novelty) is a combination strategy between Novelty Search and Bayesian Optimization
- BEACON iteratively executing the following two steps:
- 1. Build Gaussian process (GP) surrogate with sampled data points

- 2. Query new data point by maximizing the following acquisition function:
 - $\succ \alpha(x|D) = \frac{1}{k} \sum_{i=1}^{k} \operatorname{dist}(\mathbf{GP}(\mathbf{x}), y_i^*)$
 - \triangleright Where GP(x) is a GP posterior prediction
 - $\rightarrow y_i^*$ is the k-nearest neighbor of GP(x)

TR-BEACON

- Trust region-based BEACON (TR-BEACON) is designed to tackle problems with high-dimensional feature space
- The trust region expands when a novel outcome is discovered (indicated by an increase in the variance of sampled outcomes) and shrinks after failing to discover a novel outcome for *N* consecutive attempts.

Results

Material Exploration Tasks

1.0 - BEACON

- We compare BEACON with several state-of-the-art algorithms on several material exploration tasks
- The goal is to discover as many property value as possible within given budget

Water solubility for molecules

Maze Navigation Task

- The goal for the maze navigation problem is to find the optimal control policy to navigate the green ball to the red ball within given time steps
- Control policy is defined as a bias-free single layer feedforward neural network with 24 weight parameters
- Reward = $\frac{\text{initial distance from target -final distance from target}}{\text{initial distance from target}}$

